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Abstract. This paper introduces and makes use of spiking neural
P systems with anti-spikes and rules on synapses to sort integers. Here we
discuss two types of sorting, bead sort and bitonic sort to sort integers.

1 Introduction

Spiking neural P systems (in short, SN P systems) introduced in [10] are parallel
and distributed computing models which abstract the way neurons communicate
by means of electrical impulses of identical shape, called spikes. There exist many
variants of spiking neural P systems. However, in some cases, the difference in
these variants are not with the actual structural features but with execution
semantics like maximal, sequential, asynchronous, exhaustive etc. Some of them
have special concepts like extended rules [1], astrocytes [7], anti-spikes [13], neu-
ron division and budding [14], rules on the synapses [17] etc. We refer to the
respective chapter of [15] for general information in this area, and to the mem-
brane computing website from [18] for details.

Here we introduce the hybrid model of SN P systems combining the fea-
tures of anti-spikes with rules on the synapses and name them as spiking neural
P systems with anti-spikes and rules on synapses (in short, SN PA systems with
rules on synapses). So these systems make use of two types of objects called
spikes (a) and anti-spikes (a). The use of anti-spikes not only simplify the com-
plexity of the rules but also allow to include negative numbers in computing.

In standard SN P systems the rules reside inside neurons and upon firing
the spikes emitted by the neurons are sent to all neighbouring neurons through
their outgoing synapses. Instead of rules inside neurons, here we have rules on
the synapses. At any step, when the number of spikes/anti-spikes present in a
given neuron is satisfied by a rule on a synapse leaving from that neuron, the
rule is enabled and upon firing a spike/an anti-spike is sent to the neuron at the
end of the synapse. As expected, the SN PA systems with rules on synapses are
able to compute all Turing computable sets of numbers.

Sorting is one of the most frequent operations in many applications, and
parallel algorithms for sorting have been studied since the beginning of paral-
lel computing. P systems are used to simulate various sorting algorithms [2,3].
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Batcher’s bitonic sorting network [6] was one of the first methods proposed. The
method is simulated to sort non-negative integers using P systems [3] and SN P
systems [8]. In this paper we simulate the bitonic sorting network using SN PA
systems with rules on synapses to sort integers.

Another natural parallel sorting algorithm for sorting non-negative integers
is bead sort [5]. This algorithm was also simulated using P systems in [4]. Ionescu
and Sburlan in [11] used SN P system to sort n non-negative integers, and the
model consisted of 3 layers of n neurons each. The first layer was made up of input
neurons which in the initial configuration contained the input values codified as
numbers of spikes. At each time unit these neurons sent one spike each to the
second layer. This layer decanted the spikes to the third layer, where the output
neurons were located. After a number of steps equal to the maximum value of
the n numbers, the ith output neuron received the ith smallest value, codified
as number of spikes, sorting thus in ascending order. In a way, the idea of the
algorithm is the same as that of bead sort. The model makes use of 3n neurons,
(3n2 + n)/2 synapses and n2 + n rules. The time complexity of the algorithm
is O(M) where M is the maximum of the n numbers. In this paper we use SN
PA systems with rules on synapses to simulate the algorithm and observe that
this model makes use of 2n + 2 neurons, 4n synapses and n2 + 3n rules to sort
n integers, which is comparatively less complex than the system in [11].

2 Prerequisites

We assume the reader to be familiar with formal language theory and membrane
computing. The reader can find details about them in [15,16] etc.

For an alphabet V , V ∗ is the free monoid generated by V with respect to
the concatenation operation and the identity λ (the empty string); the set of all
non-empty strings over V , that is, V ∗ − {λ}, is denoted by V +. When V = {a}
is a singleton, then we write a∗ and a+ instead of {a}∗ and {a}+.

A regular expression over an alphabet V is defined as: (i) λ and each a ∈ V is
a regular expression, (ii) if E1, E2 are regular expressions over V , then (E1)(E2),
(E1) ∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing else is
a regular expression over V . With each expression E we associate a language
L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a}, for all
a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2), and
L((E1)+) = L(E1)+, for all regular expressions E1, E2 over V .

We now introduce spiking neural P systems with anti-spikes and rules on
synapses.

2.1 Spiking Neural P Systems with Anti-spikes and Rules
on Synapses

A spiking neural P system with anti-spikes and rules on synapses, of degree
m ≥ 1, is a construct

Π=(O, σ1, σ2, σ3,. . ., σm, syn, IN , OUT ), where
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1. O = {a, a} is a binary alphabet; a is called spike and a is called an anti-spike.
2. σ1, σ2, σ3,. . ., σm are neurons of the form σi = (ni) with 1 ≤ i ≤ m where

ni is the number of spikes or anti-spikes contained in the neuron σi and if
ni > 0 then the neuron is having ni spikes and if ni < 0 then the neuron is
having | ni | anti-spikes;

3. syn is the set of synapses; each element in syn is a pair of the form ((i, j),
R(i, j)), where (i, j) indicates that there is a synapse connecting neurons σi

and σj , with i, j ∈ {1, 2, . . . ,m}, i �= j, and R(i, j) is a finite set of rules of
the following two forms:
(i) E/br → b′ where b, b′ ∈ {a, a}, r ≥ 1 and E is a regular expression over b;
(ii) bs → λ for some s ≥ 1, with the restriction that bs /∈ L(E) for any rule
E/br → b′ of type (i) from R(i, j);
There are four categories of spiking rules identified by (b, b′) ∈ {(a, a), (a, a),
(a, a), (a, a)}.

4. IN, OUT ⊆ {1, 2, 3, . . . ,m} are the set of input and output neurons respec-
tively.

A rule E/br → b′ ∈ R(i, j) with b, b′ ∈ {a, a} is applied as follows. If the neuron
σi contains number of bs equal to c, and bc ∈ L(E), c ≥ r, then the rule can
fire, and upon application, r spikes of kind bs are consumed (thus only c − r
remain in σi) and a b′ is released, which will immediately exit the neuron. The
spike/anti-spike emitted by neuron σi will pass immediately to all neurons σj

such that E/br → b′ ∈ R(i, j). This means that the transmission of spike/anti-
spike takes no waiting time (since the rules do not specify a time delay), the
spike/anti-spike will be available in neuron σj in the next step. There is an
additional restriction that a and a cannot stay together, they annihilate each
other. If a neuron has either objects a or objects a, and further objects of either
type (maybe both) arrive from other neurons, such that we end with aq and
as inside, then immediately an annihilation rule aa → λ (which is implicit in
each neuron), is applied in a maximal manner, so that either aq−s or (a)s−q

remain for the next step, provided that q ≥ s or s ≥ q, respectively. This mutual
annihilation of spikes and anti-spikes takes no waiting time and the annihilation
rule has priority over spiking and forgetting rules, so each neuron always contains
either only spikes or anti-spikes. If we have a rule E/br → b′ with L(E) = {br},
then we write it in the simplified form as br → b′ and call it pure. The rules
of the form bs → λ ∈ R(i, j) are called forgetting rules. If the neuron contains
exactly s number of bs, then the forgetting rule bs → λ can be applied removing
s number of bs from the neuron immediately.

The configuration of the system is described by C = 〈β1, β2, . . . , βm〉, where
βi is the number of spikes/anti-spikes present in neuron σi. At any moment, if
βi > 0, it means that there are βi spikes in neuron σi; if βi < 0, it indicates
that neuron σi contains | βi | anti-spikes. The initial configuration is C0 =
〈n1, n2, . . . , nm〉.

As usual in SN P systems, a global clock is assumed, marking the time for
all neurons and synapses. In each time unit, if a synapse (i, j) can use one of
its rules, then a rule from R(i, j) must be used. It is possible that there is
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more than one rule that can be used on a synapse at some moment, since two
firing rules, E1/bc → b′ and E2/b̂r → b̂′ may have L(E1) ∩ L(E2) �= ∅ where
{b, b′, b̂, b̂′} ∈ {a, a}. In this case, the synapse will non-deterministically choose
one of the enabled rules to be used.

The system works sequentially on each synapse (at most one rule from each
set R(i, j) can be used), and in parallel at the level of the system (if a synapse
has at least one rule enabled, then it has to use a rule).

A delicate problem appears when several synapses starting from the same
neuron have rules which can be applied. We work here with the restriction that
all rules which are applied consume the same number of spikes from the given
neuron. Let us assume that the applied rules on the synapses leaving from σi

are of the form Eu/bc → b′ then c number of bs are removed from σi (and not a
multiple of c, according to the number of applied rules). Of course, this restriction
can be replaced by another strategy: various rules can consume various numbers
of spikes and the sum of these numbers of spikes is removed from the neuron.

Using the rules in this way, we pass from one configuration of the system to
another configuration; such a step is called a transition. For two configurations
C and C′ of Π we denote by C =⇒ C′, if there is a direct transition from C to C′

in Π.
A computation of Π is a finite or infinite sequence of transitions starting from

the initial configuration, and every configuration appearing in such a sequence is
called reachable. A computation halts if it reaches a configuration where no
rule can be used. With any halting computation, we associate a number of
spikes/anti-spikes appearing in the output neurons which encode the vector of
integer numbers as the output of the system. When both the input and output
neurons are considered, the system can be used as a transducer. Henceforth in
the paper, SN P systems with anti-spikes and rules on synapses are used as
transducers and are referred to as SN PA systems.

3 Bitonic Sorting Network

This section describes a variant of a sorting network called bitonic network that
has a fast sorting or ordering capability. A sorting network can be used as a
multiple-input, multiple-output switching network. Other applications of sort-
ing networks are as a switching network with buffering, a multi-access memory,
a multi-access content-addressable memory, and as a multiprocessor. The advan-
tage of bitonic networks is the flexibility (one network can accommodate input
lists of various lengths) and the modularity (a large network can be split up into
several identical modules).

The basic component of a bitonic sorting network is a comparator. A com-
parator is a device with two inputs x and y and two outputs l and h. For
an increasing comparator, l = min(x, y) and h = max(x, y); for a decreasing
comparator l = max(x, y) and h = min(x, y). Figure 1 gives the schematic rep-
resentation of the two types of comparators. As two elements enter the input
wires of the comparator, they are compared and, if necessary, exchanged before
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Fig. 1. A schematic representation of comparators

they go to the output wires. We denote an increasing comparator by ↓ and a
decreasing comparator by ↑.

The key operation of the bitonic sorting network is the rearrangement of
a bitonic sequence into a sorted sequence. A bitonic sequence is a sequence of
elements < a0, a1, . . . , an−1 > with the property that either (1) there exists an
index i, 0 ≤ i ≤ n − 1, such that < a0, . . . , ai > is monotonically increasing
and < ai+1, . . . , an−1 > is monotonically decreasing, or (2) there exists a cyclic
shift of indices so that (1) is satisfied. For example, < 1, 2, 4, 7, 6, 0 > is a bitonic
sequence, because it first increases and then decreases.

We present a method to rearrange a bitonic sequence to obtain a monoton-
ically increasing sequence. Let S =< a0, a1, . . . , an−1 > be a bitonic sequence
such that a0 ≤ a1 ≤, . . . ,≤ an/2−1 and an/2 ≥ an/2+1 ≥, . . . ,≥ an−1. Consider
the following subsequences of S:
S1 =< min(a0, an/2),min(a1, an/2+1), . . . , min(an/2−1, an−1) >
S2 =< max(a0, an/2),max(a1, an/2+1), . . . , max(an/2−1, an−1) >.
The sequences S1 and S2 are bitonic sequences. Furthermore, every element of
the first sequence is smaller than every element of the second sequence. Thus,
we have reduced the initial problem of rearranging a bitonic sequence of size
n to that of rearranging two smaller bitonic sequences and concatenating the
results. We refer to the operation of splitting a bitonic sequence S of size n into
the two bitonic sequences S1 and S2 as a bitonic split. Although in obtaining
S1 and S2 we assumed that the original sequence had increasing and decreas-
ing sequences of the same length, the bitonic split operation also holds for any
bitonic sequence.

We can recursively obtain shorter bitonic sequences using bitonic split for
each of the bitonic subsequences until we obtain subsequences of size one. At
that point, the output is sorted in monotonically increasing order. Since after
each bitonic split operation the size of the problem is halved, the number of
splits required to rearrange the bitonic sequence into a sorted sequence is log n.
The procedure of sorting a bitonic sequence using a series of bitonic splits is
called bitonic merge.

So the key components of a bitonic sorting network are the bitonic splitters
and the bitonic mergers. The splitter of size n takes as input a bitonic sequence
of length n and partitions it in two bitonic sequences of equal length. A bitonic
merger of size n consists of a splitter of size n and of two mergers of size n/2, of



Sorting Using Spiking Neural P Systems with Anti-spikes and Rules 295

Fig. 2. A bitonic sorting network for n = 8. The network can be partitioned into three
stages, each has bitonic mergers of size 2, 4, and 8 respectively.

opposite direction. It accepts as input a bitonic sequence and sorts it in ascending
or descending order (direction).

Figure 2 illustrates a typical bitonic sorting network for sorting n = 8 num-
bers in ascending order. The input wires are numbered 0, 1, . . . , n − 1. The net-
work can be partitioned into three stages, each has bitonic mergers of size 2, 4,
and 8 respectively. Each stage has column of comparators drawn separately. The
network takes an unsorted sequence of size 8 and outputs it in ascending order.

Let us now see how this network works. The first stage groups the list into
n/2 bitonic sequences of length two. A sequence of two elements x and y forms
a bitonic sequence, since either x ≤ y, in which case the bitonic sequence has x
and y in the increasing part and no elements in the decreasing part, or x ≥ y,
in which case the bitonic sequence has x and y in the decreasing part and no
elements in the increasing part. Hence, any unsorted sequence of elements is
a concatenation of bitonic sequences of size two. It merges the adjacent bitonic
sequences in increasing and decreasing order to get bitonic sequences of size four.

So each stage of the network shown in Fig. 2 merges adjacent bitonic
sequences in increasing and decreasing order. According to the definition of a
bitonic sequence, the sequence obtained by concatenating the increasing and
decreasing sequences is bitonic. Hence, the output of each stage in the network
in Fig. 2 is a concatenation of bitonic sequences that are twice as long as those at
the input. By merging larger and larger bitonic sequences, we eventually obtain
a bitonic sequence of size n. Merging this sequence sorts the input. We refer
to the algorithm embodied in this method as bitonic sort and the network as a
bitonic sorting network. The first three stages of the network are shown in Fig. 2.
The last stage of Fig. 2 is shown explicitly in Fig. 3.

A network can also be represented as a directed acyclic graph [9].

Definition 1 (Network). A network T of size n is a directed acyclic graph
such that:
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Fig. 3. Biotonic merger of size 8 represented as a graph

1. there are n nodes, called input terminals, with in-degree 0 and out-degree 1,
labeled from 0 to n − 1;

2. there are n nodes, called output terminals, with in-degree 1 and out-degree 0,
labeled from 0 to n − 1;

3. all the remaining nodes u, representing comparators, have in-degree and out-
degree 2.

Figure 3 represents the bitonic merger under the above formalism. We define
the depth of a node u of network T , d(u), as the length of the longest path in T
from an input node to u. The depth of network T , d(T ), is the maximum depth
of a node of in-degree and out-degree 2 in T .

The last stage of an n-element bitonic sorting network contains a bitonic
merging network with n inputs. This has a depth of log n. The other stages
perform a complete sort of n/2 elements. Hence, the depth, d(T ), of the network
in Fig. 2 is given by Θ(log2n).

The arcs of a network can be partitioned in n arc-disjoint paths, each joining
an input node to an output node. Such a partition yields a line-representation
of T , as in [12].

4 Bitonic Sorting of Integers Using SN PA Systems
with Rules on the Synapses

We note that the above representation is a theoretical model which indicates the
comparisons between input values. However, in the context of SN PA systems
with rules on synapses, this model has a straightforward implementation. We
encode the positive numbers as the number of spikes, negative numbers as the
number of anti-spikes and zero with the symbol λ. Each wire is now represented
by a synapse between two neurons, and each value x travels between two neurons
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as x spikes/anti-spikes, one spike/anti-spike per time unit. Comparators are
implemented by a set of neurons which send the minimum and the maximum
(as number of spikes/anti-spikes) through designated synapses. Once these two
ingredients are at hand, we proceed to construct an SN PA system in the same
way the original sorting network was constructed.

Fig. 4. SN PA with rules on synapses as comparator of integers

In this section we are concerned only with comparators of two elements,
hence with SN PA systems which sort two numbers (for brevity called SN PA
comparators). In Fig. 4(a) we give an ascending comparator, and in Fig. 4(b)
we give a descending comparator. Consider the SN PA system modeling an
ascending comparator in Fig. 4(a) and the numbers x and y to be sorted. In order
to be able to use these SN PA systems with rules on synapses as building blocks
of a bitonic sorting network, we assume that instead of loading the numbers
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x and y as spikes/anti-spikes in i0 and i1 in the initial configuration, they are
fed one by one to these input neurons by another neuron. At each step they
instantaneously send one spike/anti-spike to both s0 and s1. Here there are two
cases. The first case is if both the values are non-negative (negative) then as long
as both the neurons i0 and i1 are sending their spikes (anti-spikes) in each step
of the computation, only s0 has two spikes (two anti-spikes) and thus sending a
spike (an anti-spike) to both the output neurons o0 and o1. During these steps
neuron s1 remains empty because of the annihilation of spike and anti-spike it
receives. After one input neuron has consumed all its spikes (anti-spikes), the
minimum (maximum) is obtained in o0 (o1). There will be only one input neuron
to send spikes (anti-spikes) to s0 and s1. In this case also, the outgoing synapse
from s1 forgets its spike (anti-spike), and s0 forwards it to o1 (o0), where the
maximum (minimum) is obtained.

The other case is if one value is non-negative and the other one is negative
then as long as both i0 and i1 are sending their spikes/anti-spikes, only s1 has two
spikes or two anti-spikes and thus sending an anti-spike to neuron o0 and a spike
to neuron o1 (since negative values are always less than non-negative values).
During these steps neuron s0 remains empty because of the annihilation of spike
and anti-spike it receives. After one input neuron has consumed its spikes (anti-
spikes), the maximum (minimum) value is obtained in o1 (o0). There will be
only one input neuron to send anti-spikes (spikes) to s0 and s1. In this case, the
outgoing synapse from s1 forgets its spikes (anti-spikes), and s0 sends them to o0
(o1), where the minimum (maximum) is obtained Now we prove the composition
lemma for SN PA increasing comparators.

Lemma 1. (Composition lemma for increasing comparator). Suppose that in
each time unit from t0 until t0 +(|x|−1) neuron i0 receives one spike/anti-spike
and that in a rest it does not receive any spike/anti-spike. Analogously, suppose
that in each time unit from t0 to t0 +(|y|− 1) neuron i1 receives one spike/anti-
spike, and that in a rest it does not receive any spike/anti-spike. Then neurons
o0 and o1 either or both receive spike/anti-spike only for time moments from
t0 +2 until t0 +2+(max(|x|, |y|)−1) and at time moment t0 +2+max(|x|, |y|),
the minimum and maximum of x and y codified as number of spikes/anti-spikes
are stored in o0 and o1 respectively.

Proof. Consider the time moment t, with t0 ≤ t ≤ t0 + (min(|x|, |y|) − 1).
Both neurons i0 and i1 receive spikes/anti-spikes and in turn send them through
the synapses by the rules. One of the neurons s0 and s1 has spikes/anti-spikes
depending on the values of x and y, neuron s0 or s1 sends one spike/anti-spike
to both of the neurons o0 and o1. Therefore at time moment t + 2 neurons
o0 and o1 receive their first spike/anti-spike each. This continues till the step
t0 + 2 + (min(|x|, |y|) − 1). From time moment t0 + min(|x|, |y|) onward, only
one neuron of i0 and i1 sends spikes/anti-spikes, hence the rules on the outgoing
synapses of s0 and s1 prevent one of o0 and o1 from receiving other spikes/anti-
spikes. The first part of the claim is proved.

At each time moment t, with t0+min(x, y) ≤ t ≤ t0+(max(x, y)−1), one of
the neurons o0 and o1 receives one spike/anti-spike at moment t + 2. After time
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moment t0 + max(|x|, |y|) there are no other spikes/anti-spikes enters into the
system, hence from time moment t0 + 2 + max(|x|, |y|) onward there will be no
other spikes entering neurons o0 and o1. The minimum and maximum of x and
y codified as number of spikes/anti-spikes are stored in o0 and o1, respectively.
A similar lemma is valid in the case of a SN PA decreasing comparator.

Assume that we are given a network T as a graph, and that we have a line
representation of it (i.e., a set of n arc-disjoint path linking input terminals with
output terminals). Hence, we extend Definition 1, by labeling edges, apart from
input and output terminals. For every path that begins with input terminal
labeled i, we label all its edges with i. More formally, we have the following
definition.

Definition 2 (Edge labeling). Given a graph T as in Definition 1 representing
a sorting network, and a line-representation of T, we attach to each edge e ∈
E(T ) that belongs to a path in the line representation of T beginning with i, label
l(e) = l(i) (supposing that i is labeled with l(i)).

For example, in Fig. 3, we have a labeled bitonic merger. A SN PA system
modeling a sorting network given as a graph is obtained in the following way.
For each input terminal node l we have a corresponding input neuron il. For
each comparator (ascending / descending) we have the s- and o-neurons of a SN
PA comparator (ascending / descending). For each edge of the graph between
two comparators we have synapses between corresponding SN PA comparators.
The output terminal nodes are the o-neurons of the last SN PA comparators.

More formally, we construct and label the SN PA system in the following
recursive way.

1. for each input terminal node l we have a corresponding input neuron il = il,1,
0 ≤ l ≤ n − 1;

2. for each comparator at depth 1 ≤ k ≤ d(T ) with incident edges labeled with l
and j, l < j, we add the s- and o-neurons of a SN PA comparator, connected
in the previously specified way. With the notations in Fig. 4, let s0 and s1,
and o0 and o1 be the s-, and o-neurons, respectively, just added. We add
synapses between the following pairs of neurons: ((il,k, s0), {a → a, a → a}),
((il,k, s1), {a → a, a → a}), ((ij,k, s0), {a → a, a → a}), ((ij,k, s1), {a →
a, a → a}). Additionally, if k < d(T ), we label o0 with ol,k = il,k+1, and o1
with oj,k = ij,k+1; else we label o0 with ol,k = ol, and o1 with oj,k = oj .

As an example, Fig. 5 depicts an SN PA system with rules on synapses which
models the bitonic merger of size 8.

Theorem 1. For any SN PA ascending comparator at depth k corresponding to
a comparator with incident edges l < j which carry values x and y, respectively,
we have that

1. in each time moment from 2(k − 1) until 2(k − 1) + |x| neuron il,k receives
one spike;
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Fig. 5. SN PA system modelling the bitonic merger of size 8

2. in each time moment from 2(k − 1) until 2(k − 1) + |y| neuron ij,k receives
one spike.

3. in each time moment from 2k until 2k + min(|x|, |y|) both the neurons ol,k
and oj,k receive one spike/anti-spike

4. in each time moment from 2k+min(|x|, |y|)+1 until 2k+max(|x|, |y|) either
of the neurons ol,k and oj,k receives one spike/anti-spike

Proof. We prove the claim by induction on k. When k = 1 we are at time moment
t = 0. We have explained previously that the behaviour of the system when the
spikes/anti-spikes are loaded initially in the input neurons is identical to when
they are fed one by one to these neurons. Claims 3 and 4 are true from Lemma1
and t0 = 0. We now suppose that the claim is true for k, with 1 ≤ k < log n, and
prove it for k+1. From claims 3 and 4 of the induction hypothesis, we know that
both the neurons ol,k = il,k+1, oj,k = ij,k+1 receive one spike/anti-spike from 2k
until 2k + min(|x|, |y|), where min(|x|, |y|) is the number of spikes/anti-spikes
carried by both the wires l and j before the comparator at depth k+1. After that,
only one of the neurons ol,k = il,k+1, oj,k = ij,k+1 receives one spike/spikes from
2k + min(|x|, |y|) + 1 until 2k + max(|x|, |y|), where max(|x|, |y|) − min(|x|, |y|)
is the number of spikes/anti-spikes carried by wire l or j before the comparator
at depth k + 1. After the step 2k + max(|x|, |y|), the minimum u = min(x, y) is
stored ol,k and v = max(x, y) is stored oj,k. This proves claims 1 and 2. If we
take t0 = 2k, x = u, and y = v in Lemma 1, we have that claims 3 and 4 are
true.



Sorting Using Spiking Neural P Systems with Anti-spikes and Rules 301

5 Bead Sorting of Integers Using SN PA Systems
with Rules on the Synapses

Here we design an SN PA system Πs with rules on synapses that can sort n
integers in ascending order. This model drastically decreases the complexity in
terms of the number of neurons and synapses. We encode the positive numbers
as the number of spikes, negative numbers as the number of anti-spikes and zero
with the symbol λ.

Fig. 6. SN PA system with rules on synapses Πs for sorting integers

The SN PA system Πs shown in Fig. 6 has n input neurons, n output neurons
and two intermediate neurons (labeled s1 and s2). The input is stored in the first
line of the system (hence in the neurons labeled i1, i2, . . . , in) encoded in the
form of number spikes/anti-spikes. Each input neuron has two synapses, one to
neuron s1 and the other to neuron s2. At each step, each input neuron until
not empty, sends an anti-spike to s1 if it contains a negative number encoded
in the form of number of anti-spikes. If the input neuron contains spikes (i.e., it
represents a positive number), then it sends a spike to neuron s2. So all the input
neurons in the first layer of the structure Πs are having the same type of synapses
((il, s1), {a+/a → a}) and ((il, s2), {a+/a → a}) where 1 ≤ l ≤ n. In the second
layer the negative and non-negative integers are filtered. Let the number of
negative numbers in list be m with 0 ≤ m ≤ n. The number of anti-spikes neuron
s1 receives in the first step corresponds to the number of negative numbers in the
original unsorted list. So, in the first step of the computation, neuron s1 receives
m anti-spikes which means that there are m number of negative integers and
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n − m non-negative integers in the unsorted list. The neuron s1 sorts the m
negative numbers in ascending order and stores them in the first m left most
neurons of the third layer. Similarly neuron s2 sorts the positive numbers and
stores them in the rightmost neurons of the third layer.

Intermediate neurons s1 and s2 have outgoing synapses to all neurons in the
third layer of the system. Depending upon the number of anti-spikes the neuron
s1 receives, it sends an anti-spike to one or more output neurons. At any step
during computation, if neuron s1 has p anti-spikes, then in the next step, it sends
an anti-spike to all the p left most output neurons in the third layer. Similarly
if the neuron s2 receives q spikes then it sends a spike to all the q right most
output neurons in the third layer. In this way, the SN PA system Πs can sort
n integers in O(| M |) computational steps, where M is the absolute maximum
of the n numbers. We can observe that this model makes use of 2n + 2 neurons,
4n synapses and n2 + 3n rules to sort n integers, which is comparatively less
complex than the system in [11].

6 Conclusion

In this paper we have simulated two parallel sorting algorithms, bitonic sort
and bead sort to sort n integers using SN PA systems with rules on synapses.
For bitonic sorting, the key operation is the comparison of two elements, so
we have designed the SN PA comparators which can compare two integers and
arrange them in ascending or descending order. Using these comparators, we
have designed the SN PA bitonic sorting network that can perform sorting of an
integer array. We simplified the sorting model in [11] using SN PA systems with
rules on synapses and also incorporated negative numbers in the unsorted list.
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