
Smaller Universal Spiking Neural P Systems

with Anti-Spikes

Venkata Padmavati Metta, Alica Kelemenová

Institute of Computer Science and Research Institute of the IT4Innovations
Centre of Excellence, Silesian University in Opava, Czech Republic

vmetta@gmail.com, alice.kelemenova@fpf.slu.cz

Abstract. Spiking neural P systems with anti-spikes (in short, SN PA
systems) are parallel computing models based on the way neurons com-
municate using two types of electrical impulses called excitatory impulses
(spikes) and inhibitory impulses (anti-spikes). A universal computing SN
PA system was designed by T. Song et al. using 75 neurons with 6 differ-
ent types of neurons, 8 different types of rules and a total of 125 rules.
In this paper, we continue the study small universal spiking neural P
systems with anti-spikes and we improve in the types of neurons and the
number of rules. We construct a small universal SN PA system with 104
simple neurons i.e., neurons having only one rule of the form a → a or
a → a.

1 Introduction

Spiking neural P systems (in short, SN P systems) are membrane computing
models which abstract the way neurons communicate by means of electrical im-
pulses of identical shape, called spikes. The SN P systems were introduced in
[6], and then investigated in a large number of papers. We refer to the respec-
tive chapter of [2] for general information in this area, and to the membrane
computing website from [8] for details.

Spiking neural P systems with anti-spikes [5] consist of a set of neurons placed
in the nodes of a directed graph and sending two types of signals (spikes, denoted
by the symbol a and anti-spikes, denoted by the symbol a) along synapses (arcs
of the graph). Thus, the architecture is same as that of a spiking neural P
system, but with two kinds of objects present in the neurons. The objects evolve
by means of spiking rules, which are of the form E/bc → b′, where b, b′ ∈
{a, a}. If L(E) = {bc} then the rules are written as bc → b′ and are called
pure. The system has four categories of spiking rules identified by (a, a), (a, a)
(anti-spikes are produced from usual spikes by means of usual spiking rules),
(a, a) and (a, a) (rules consuming anti-spikes can produce spikes or anti-spikes).
The latter two rules are generally avoided as they are quite unnatural. Each
neuron in the system has an implicit annihilation rule of the form aa → λ
(if an anti-spike meets a spike in a given neuron, then they annihilate each
other (the disappearance of one a and one a takes no time), and this happens
instantaneously in a maximal way. The system works in a synchronized manner,



i.e., in each time unit, each neuron which can use a rule should do it, but the work
of the system is sequential in each neuron: only (at most) one rule is used in each
neuron. One of the neurons is considered to be the output neuron, and its spikes
are also sent to the environment. The moments of time when a spike is emitted
by the output neuron are marked with 1, the other moments are marked with 0.
This binary sequence is called the spike train of the system, it might be infinite
if the computation does not stop. The distance between consecutive spikes is the
main way to encode the information. SN PA systems with anti-spikes are proved
as universal [5].

When investigating any (universal) computing device, a “standard” problem
is to consider restricted versions of it without losing the computing power. This
issue is also particularly interesting for SN PA systems. Several answers have
been given, for instance in [5], it was proved that SN PA systems with pure
spiking rules of categories (a, a), (a, a), and (a, a) with forgetting rules are uni-
versal as number generators. Recently, Song et al. [9] proved that pure spiking
rules of categories (a, a) and (a, a) without forgetting rules, or spiking rules of
categories (a, a) and (a, a) without forgetting rules (the neurons change spikes
to anti-spikes or change anti-spikes to spikes) are sufficient for universality as
number generators. Zeng et al. [11] proved that homogeneous SN PA systems,
i.e., SN PA systems where the rules in every neuron are identical, are universal.

All these systems consider spikes to represent a number and the number of
spikes present in a neuron (corresponding to a register) to represent the number
stored in the register. In this paper, we make use of anti-spikes to represent a
number and the number of anti-spikes in a neuron is equal to the number stored
in the corresponding register. This avoids the use of rules of the form a → a
in a neuron to check its contents for zero. Here one extra neuron is maintained
for each register which keeps a copy of the contents of the register but with
a different spiking rule a → a, this reduces the number of auxiliary neurons
required for the simulation of the SUB instruction.

It is a natural and well investigated topic in computer science to look for small
universal computing devices of various types. This topic was also considered for
SN PA systems. This paper considers only two rules of the form a → a and a → a
without any forgetting rules for constructing small universal SN PA systems. In
[10], a universal SN PA system with 75 neurons is constructed as a device of
computing functions in which 125 rules, 6 types of neurons and 8 types of rules
are used. In this work, the problem of constructing universal SN PA systems
with less number of rules is investigated. Specifically, a universal SN P system
with 104 simple neurons (“simple” in the sense that each neuron has only one
rule, so a total of 104 rules) having the rules of the form a → a or a → a is
constructed for computing functions.

2 Prerequisites

We assume the reader to be familiar with formal language theory and membrane
computing. The reader can find details about them in [3], [2] etc.



For an alphabet V , V ∗ is the free monoid generated by V with respect to
the concatenation operation and the identity λ (the empty string); the set of all
non-empty strings over V , that is, V ∗ − {λ}, is denoted by V +. When V = {a}
is a singleton, then we write a∗ and a+ instead of {a}∗ and {a}+.

A regular expression over an alphabet V is defined as: (i) λ and each a ∈ V is
a regular expression, (ii) if E1, E2 are regular expressions over V , then (E1)(E2),
(E1) ∪ (E2), and (E1)

+ are regular expressions over V , and (iii) nothing else is
a regular expression over V . With each expression E we associate a language
L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a}, for all
a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2), and
L((E1)

+) = L(E1)
+, for all regular expressions E1, E2 over V .

We pass now to introducing the universal register machines, and then to the
spiking neural P systems with anti-spikes.

2.1 Universal Register Machines

Because the register machines used in the following sections are deterministic,
we only recall the definition of these types of machines. A deterministic register
machine is a construct M = (m,H, l0, lh, I), where m is the number of regis-
ters, H is the set of instruction labels, l0 is the start label (labelling an ADD
instruction), lh is the halt label (assigned to instruction HALT ), and I is the
set of instructions; each label from H labels only one instruction from I, thus
precisely identifying it. When it is useful, a label can be seen as a state of the
machine, l0 being the initial state, lh the final/accepting state.
The labelled instructions are of the following forms:

1. li : (ADD(r), lj) (add 1 to register r and then go to the instruction with
label lj),

2. li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and
go to the instruction with label lj , otherwise go to the instruction with label
lk),

3. lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers). If we reach the halt
instruction, then the number n present in register 0 (we assume that the registers
are always numbered from 0 to m−1) at that time is said to be generated by M .
It is known (see, [7]) that register machines generate all sets of numbers which
are Turing computable.

A register machine can also compute any Turing computable function: we
introduce the arguments n1, n2, . . . , nk in specified registers r1, r2, . . . , rk (with-
out loss of the generality, we may assume that we use the first k registers), we
start with the instruction with label l0, and if we stop (with the instruction with
label lh), then the value of the function is placed in another specified register, rt,



with all registers different from rt being empty. The partial function computed
in this way is denoted by M(n1, n2, . . . , nk). In the computing form, it is known
that (see e.g., [7]) that the deterministic register machines are equivalent with
Turing machines.

Fig. 1. A universal register machine Mu from Korec [4]

In [4], the register machines are used for computing functions, with the uni-
versality defined as follows. Let (φ0, φ1, . . .) be a fixed admissible enumeration of
the unary partial recursive functions. A register machine Mu is said to be univer-
sal if there is a recursive function g such that for all natural numbers x, y we have
φx(y) = Mu(g(x), y). In [4], several universal register machines are constructed,
with the input (the couple of numbers g(x) and y) introduced in registers 1 and
2, and the result obtained in register 0. In the following, we consider the specific
universal register machine Mu = (8, H, l0, lh, I), with instructions (their labels
constitute the set H) given in Fig. 1, which is also the one used in [1] (it has 8
registers numbered from 0 to 7 and 23 instructions).

As in the case considered in [1], we further add a register 8, which is never
decremented during the computation, and we replace the old halt instruction of
Mu with the following three instructions: lh : (SUB(0), l22, l

′

h), l22 : (ADD(8), lh),
and l′h : HALT . Thus at the end of the program of the initial machine we will
copy the contents of the old output register (register 0) into the register 8 which
will serve as the new output register. We do this so that no subtraction rule will
be applicable to the output register. In this way, we have 9 registers (numbered
from 0 to 8), 24 ADD and SUB instructions, and 25 labels. We denote by M ′

u

the obtained register machine.

2.2 Spiking Neural P Systems with anti-spikes

We now introduce the SN P systems with anti-spikes in the form necessary
for computing functions. A computing SN P system with anti-spikes, of degree



m ≥ 1, is a construct of the form

Π=(O, σ1, σ2, σ3, . . ., σm, syn, in, out), where

1. O = {a, a} is a binary alphabet. a is called spike and a is called an anti-spike.
2. σ1, σ2, σ3 ,. . ., σm are neurons, of the form

σi=(ni, Ri) , 1 ≤ i ≤ m, where

(a) ni ∈ {0, 1, 2, . . .} is the initial number of spikes in the neuron σi;
(b) Ri is a finite set of rules of the following two forms:

(i) E/br → b′ where b, b′ ∈ {a, a}, r ≥ 1 and E is either a regular
expression over a or a;
(ii) bs → λ for some s ≥ 1, with the restriction that bs /∈ L(E) for any
rule E/br → b′ of type (i) from Ri;

There are four categories of spiking rules identified by (b, b′) ∈ {(a, a), (a, a),
(a, a), (a, a)}. Here, we allow rules of categories (b, b′) ∈ {(a, a), (a, a)} but
not the other two types.

3. syn ⊆ { 1, 2, 3, . . ., m} × { 1, 2, 3, . . ., m} with (i, i) /∈ syn for 1 ≤ i ≤ m
(synapses among cells);

4. in, out ∈ {1, 2, 3, . . . ,m} indicate the input and the output neurons, respec-
tively.

A rule E/br → b′ is applied as follows. If the neuron σi contains c spikes/anti-
spikes, and bc ∈ L(E), c ≥ r, then the rule can fire, and upon application, r
spikes/anti-spikes are consumed (thus only c− r remain in σi) and a spike/anti-
spike is released, which will immediately exit the neuron. The spike/anti-spike
emitted by neuron σi will pass immediately to all neurons σj such that (i, j) ∈
syn. That means transmission of spike/anti-spike takes no waiting time (since the
rules do not specify a time delay), the spike/anti-spike will be available in neuron
σj in the next step. There is an additional restriction that a and a cannot stay
together, they annihilate each other. If a neuron has either objects a or objects
a, and further objects of either type (maybe both) arrive from other neurons,
such that we end with aq and as inside, then immediately an annihilation rule
aa → λ (which is implicit in each neuron), is applied in a maximal manner,
so that either aq−s or (a)s−q remain for the next step, provided that q ≥ s or
s ≥ q, respectively. This mutual annihilation of spikes and anti-spikes takes no
waiting time and the annihilation rule has priority over spiking and forgetting
rules, so each neuron always contains either only spikes or anti-spikes. If we have
a rule E/br → b′ with L(E) = {br}, then we write it in the simplified form as
br → b′ and called pure. The rules of the form bs → λ, are forgetting rules. If
the neuron contains exactly s spikes/anti-spikes, then the forgetting rule bs → λ
can be applied removing s spikes/anti-spikes from the neuron immediately.

The configuration of the system is described by C = 〈β1, β2, . . . , βm〉, where βi

is the number of spikes/anti-spikes present in neuron σi. At any moment, if βi >
0, it means that there are βi spikes in neuron σi; if βi < 0, it indicates that neuron
σi contains βi anti-spikes. The initial configuration is C0 = 〈n1, n2, . . . , nm〉.



A global clock is assumed and in each time unit, each neuron which can use
a rule should do it (the system is synchronized), but the work of the system is
sequential locally: only (at most) one rule is used in each neuron. For example, if a
neuron σi has two firing rules, E1/b

r → b′ and E2/b
c → b′ with L(E1)∩L(E2) 6=

∅, then it is possible that each of the two rules can be applied, and in that case
only one of them is chosen non-deterministically. Thus, the rules are used in the
sequential manner in each neuron, but neurons function in parallel with each
other. In each step, all neurons which can use a rule of any type, spiking or
forgetting, have to evolve, using a rule.

Using the rules in this way, we pass from one configuration of the system to
another configuration; such a step is called a transition. For two configurations
C and C′ of Π we denote by C =⇒ C′, if there is a direct transition from C to C′

in Π .
A computation ofΠ is a finite or infinite sequence of transitions starting from

the initial configuration, and every configuration appearing in such a sequence
is called reachable. A computation halts if it reaches a configuration where no
rule can be used.

Like in the case considered in [1], in order to compute a function f : Nk → N ,
where N is the set of all non-negative integers, k natural numbers n1, . . . , nk are
introduced into the system by “reading” from the environment a binary sequence
z = 10n1−110n2−1 . . . 10nk−11. This means that the input neuron of Π receives a
spike at each step corresponding to a digit 1 from string z and no spike otherwise.
Note that k+1 spikes are exactly inputted; that is, it is assumed that no further
spike is coming to the input neuron after the last spike.

We start from the initial configuration and we define the result of a compu-
tation as the number of steps between the first two spikes sent out by the output
neuron. The result is 0 if no spikes exit the output neuron and the computation
halts. The computations and the result of computations are defined in the same
way as for usual SN P systems - but we consider the restriction that the output
neuron produces only spikes, not also anti-spikes. So the result of the computa-
tion is encoded in the time distance between the first two spikes emitted by the
system with the restriction that the system outputs exactly two spikes and halts
(immediately after the second spike), hence it produces a spike train of the form
0b10r−11, for some b ≥ 0 and with r = f(n1, . . . , nk).

3 Small Universal SN P Systems with Anti-spikes

We proceed now to constructing the universal SN PA system Πu using pure rules
of categories (a, a) and (a, a) without forgetting rules, for computing functions.
The neurons in the system are quite “simple” in the sense that each neuron has
only one rule. To construct a universal SN PA system Πu, we follow the way
used in [1] to simulate a deterministic register machine by an SN P system.

The usual way of simulating a register machine M ′

u by an SN PA system con-
sists in the construction of an SN P system with anti-spikes Πu, where neurons
are associated with each register and with each label of an instruction of the



machine. In this specific case, we associate a neuron σr for each register r and
a copy of the contents of σr are kept in neuron σbr . But σr has a spiking rule
a → a where as σbr has a spiking rule a → a. Keeping two copies of the contents
of the register r with different spiking rules decreases the number of auxiliary
neurons required in the simulation of a SUB instruction. If a register r contains
a number n, then the associated neurons σr and σbr will contain n anti-spikes
each.

With each label li of an instruction in M ′

u, we also associate a neuron σli and
some auxiliary neurons σli,q , q = 1, 2, 3, . . ., thus precisely identified by label li.
Specifically, modulesADD and SUB are constructed to simulate the instructions
of M ′

u, as well as INPUT module which introduces a spike in neuron σl0 and
needed anti-spikes in σ1 and σ2, and an OUTPUT module which provides the
computed number.

l0

1

a

aa a
a3

a

a aa a

c1

in

aa a

a
a3

a

a a

2

a
a4

a
c8 c7

c6

c5
c4c3c2

a a

b1

b2

Fig. 2. INPUT module

Instead of presenting these modules formally, we give them in the graphical
form. In the initial configuration, all neurons of Πu are empty. The task to
introduce g(x) and y anti-spikes in the neurons σ1 and σ2 respectively, is covered
by the module INPUT presented in Fig. 2. The neuron σc5 converts the spikes
it receives from the input neuron into anti-spikes. The neuron σc8 fires only after
receiving the third anti-spike from σc5 , and then it sends a spike to neuron σl0 ,
thus starting the simulation of M ′

u. At that moment, neurons σ1 and σ2 are
already loaded: neuron σc3 sends to neurons σ1 and σb1 as many anti-spikes as
the number of steps between the first two input spikes, and after that it gets “over
flooded” by the second input spike and is blocked (neurons σc1 and σc2 supply
spikes to σc3 till they receive second spike through σin); in turn, neuron σc5 sends
anti-spikes to neurons σc6 , σc7 and they start working only after collecting two



anti-spikes. Neurons σc6 and σc7 supply one spike in each step to neuron σc4 ,
which loads σ2 and σb2 with as many anti-spikes as the number of steps between
the last two input spikes and all three neurons stop working after receiving the
third anti-spike from σc5 .

The work of the system is triggered by loading neurons σ1 and σ2 with g(x)
and y anti-spikes respectively, and introducing a spike in the neuron σl0 (asso-
ciated with the starting instruction of the register machine). We can compute
in our system Πu in the same way as the universal register machine M ′

u; if the
computation halts, then neuron σ8 will contain φx(y) number of anti-spikes.

In general, the simulation of an ADD or SUB instruction starts by intro-
ducing a spike in the neuron with the instruction label (we say that this neuron
is activated). Modules as in Fig. 3 and Fig. 4 are associated with the ADD and
the SUB instructions.
Simulating li : (ADD(r), lj) (module ADD in Fig. 3).

rli

a a

lj li, 1
a a

a a

br

Fig. 3. Deterministic ADD module li : (ADD(r), lj)

Assume that we are in a step t when we have to simulate an instruction
li : (ADD(r), lj), with a spike present in neuron σli (like σl0 in the initial con-
figuration) and no spikes/anti-spikes in any other neurons, except in those asso-
ciated with registers. Having a spike inside, neuron σli fires producing a spike.
This spike will simultaneously go to neurons σli,1 and σlj . In step t + 1, neu-
ron σli,1 fires using its rules a → a and send an anti-spike to both σr and σbr .
Therefore, from the firing of neuron σli , the system adds one anti-spike each to
neurons σr and σbr and fires the neuron σlj . Consequently, the simulation of the
ADD instruction is possible in Πu.
Simulating li : (SUB(r), lj , lk) (module SUB in Fig. 4).
Assume that we are in a step t when we have to simulate an instruction li :
(SUB(r), lj , lk), with a spike present in the neuron σli and no spikes/anti-spikes
in any other neurons, except in those associated with registers. Let us examine
now Fig. 4, starting from the situation of having a spike in neuron li and having
the same number of anti-spikes in the neurons σr and σbr (this number is the
value of the corresponding register r). The spike of neuron li goes immediately
to neurons σli,1 , σr and σbr . Now there are two possible cases.



r

lj

li

lk

a a

a a

a a

li, 1

a a

a a

br

a a

a

a a

a a

li, 4

li, 3li, 2

li, 5a a a a

ls, 3 lils ls

∋Lr
, , ls, 2 lils

ls

∋

Lr
, ,

Fig. 4. SUB module: simulation of li : (SUB(r), lj , lk), where Lr = {l |
l is a label of a SUB instruction acting on the register r}

1. At step t, if the neurons σr and σbr have no anti-spikes (this corresponds to
the case when register r is empty), then at step t+ 1, neurons σli,1 , σr and
σbr fire, the rule a → a is used in σr and the rule a → a is used in σbr . Let Lr

be the set of labels of SUB instructions in M ′

u acting on register r. Neuron
σr has synapses with all the neurons σls,3 and neuron σbr has synapses with
all neurons σls,2 , where ls ∈ Lr. After the step t+ 1, the neuron σli,2 has no
spikes (since the spike from σli,1 gets annihilated with the anti-spike from
σbr ) and the neuron σli,3 has a spike (σli,3 receives two spikes and one spike
gets annihilated with the anti-spike initially present in it). In all the neurons
σls,3 , the spike coming from the neuron σr gets annihilated with the anti-
spike present in them and all neurons σls,2 are left with an anti-spike, where
ls 6= li and ls ∈ Lr. Now at step t + 2, neuron σli,3 fires sending a spike to
σlk , σli,5 and to all the neurons σls,2 , ls 6= li. So all the neurons σls,2 have no
spikes/anti-spikes left inside. In the next step, the spike in σll,5 is converted
into an anti-spike and sent to all σls,3 , ls ∈ Lr. In this way, the anti-spikes in
neurons σls,3 , ls ∈ Lr are reset to the value they have at the beginning of the
simulation, which ensures that another SUB instruction can be simulated
correctly at a subsequent step. When the neuron σlk fires in the same step,
system starts to simulate the instruction lk of M ′

u.
2. At step t, if the neuron σr contains any anti-spikes (this corresponds to the

case when register r is non-empty), then the spike from σli gets annihilated
with one of the anti-spikes in σr, which means the contents of register r is
decremented by one. The same happens in the neuron σbr also. In the next



step no spike will come out of σr and σbr while σli,1 fires and sends a spike to
σli,2 and σli,3 . In σli,3 , the spike gets annihilated with the anti-spike where as
σli,2 is left with a spike. At step t+2, neuron σli,2 fires and sends a spike to
neurons σlj and σli,4 . In the next step, the neuron σlj starts and the neuron
σli,4 restores the anti-spike in σli,3 .

r

lj

li

lk

a a

a a

a a

li, 1

a a

a a

br

a a

Fig. 5. SUB module: simulation of li : (SUB(r), lj , lk), when Lr contains only one
SUB instruction

This means that the simulation of the SUB instruction is correct, we started
from li and we ended in lj if the register is non-empty and is decreased by one,
and in lk if the register is empty. If Lr contains only one SUB instruction for
a register r, then the SUB instruction involving r can be implemented using a
much simpler SUB module as shown in Fig. 5. It requires only one auxiliary
neurons since the spike coming out of σr will not go to any auxiliary neurons
associated with the other SUB instructions involving r. We can see from Fig. 1
that Lr contains only one SUB instruction each for the registers 1, 2, 3 and 7.
So, 16 auxiliary neurons can be saved for the four SUB instructions involving
these four registers.

Having the result of the computation in register 8, we can output the result
by means of the module OUTPUT in Fig. 6.

When neuron lh receives a spike, it fires and sends a spike to neurons σ8,
σb8 , σlh,1

, σlh,2
and σlh,3

. Let t be the moment when neuron lh fires. Suppose the
number stored in the register 8 of M ′

u is n.
If σ8 has no anti-spikes (when the value in register 8 is zero), at step t+1, five

neurons σlh,1
, σlh,2

, σlh,3
, σb8 and σ8 fire and all of them spike immediately except

σb8 which sends an anti-spike. Neurons σout and σb8 are left with two spikes in
each. So the computation halts without any spike emitted to the environment,
representing the number 0 as the result.

If σ8 has n > 0 anti-spikes (when the value of register 8 is n > 0), we can
observe from the Fig. 6 that at the step t + 1, only three neurons σlh,1

, σlh,2
,

σlh,3
(neurons σ8 and σb8 will not fire as the incoming spike is annihilated with

one of their anti-spikes) fire. Neuron σlh,1
sends a spike to σout and in the step



a

aaaa a

a

out

8

a a

aa a

lh, 1

lh

aa b8

lh, 3lh, 2

Fig. 6. Module OUTPUT

t + 2 neuron σout fires for the first time sending its spike to the environment.
The number of steps from this spike to the next one is the number computed by
the system. In each step from t + 1 onwards, neurons σlh,2

and σlh,3
exchange

their spikes and σlh,2
sends one spike to neurons σ8 and σb8 . The neuron σ8 does

not fire until it has any anti-spikes. This means that the process of removing
anti-spikes from the neuron σ8 and σb8 continues, iteratively having neuron σlh,2

sending spikes until σ8 and σb8 have no anti-spikes. Thus neurons σ8 and σb8

fire at the step t + n + 1 for the first time when their contents become empty.
Neuron σ8 sends a spike to σout, σb8 . Neurons σlh,2

and σlh,3
become empty as

spikes in them get annihilated with the anti-spike from σb8 . At step t + n + 2,
neuron σb8 is left with two spikes and the computation halts with a second spike
coming out of neuron σout. The interval between the two spikes emitted by σout

is (t+ n+ 2)− (t+ 2) = n, which is exactly the number stored in the register 8
of M ′

u.
The overall design of the system is given in Fig. 7. We can check that each
neuron in the system Πu has only one rule; that is, the system Πu is simple.
The system Πu has 18 neurons for the 9 registers, 25 neurons for the 25 labels,
10 neurons for the 10 ADD instructions, 54 neurons for 14 SUB instructions, 9
neurons in the INPUT module and 4 neurons in the OUTPUT module, which
comes to a total of 120 neurons. This number can be slightly decreased, by some
“code optimization”, exploiting some particularities of the register machine M ′

u.

We can simulate the consecutive ADD−SUB instructions l5 : (ADD(5), l6),
l6 : (SUB(7), l7, l8) by merging the ADD module of l5 with the SUB module of
l6. The merging can be performed by removing the neuron σl6 from the ADD
and the SUB modules and adding outgoing synapses from the neuron σl5 to
neurons σ7, σb7 and σl6,1 . A similar module can be constructed to simulate the
consecutive ADD − SUB instructions l9 : (ADD(6), l10), l10 : (SUB(4), l0, l11).
So two neurons (associated with the labels l6 and l10) are saved.



in

l0

10g(x)-110y-11

ay

Module INPUT

Module OUTPUT

Register machine simulator

ag(x)

aφx(y)

out

1 2

0

...10φx(y)-11

8

Fig. 7. The general design of the universal SN PA system

A similar operation is possible for the following four sequences of SUB−ADD
instructions, where we can save the intermediate labels (l5, l9, l16, l22), as well
as one auxiliary neuron for each pair:
l4 : (SUB(6), l5, l3), l5 : (ADD(5), l6),
l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10),
l14 : (SUB(5), l16, l17), l16 : (ADD(4), l11),
lh : (SUB(0), l22, l

′

h), l22 : (ADD(8), lh).

The module for the first pair is shown in Fig. 8. For each pair, we save two
neurons; so eight neurons are saved for the four sequences.

Here we can also save neurons in SUB − ADD instructions with the label
of the second instruction used only in the else part of the first instruction. Let
us consider the instructions l14 : (SUB(5), l16, l17), l17 : (ADD(2), l21) and l21 :
(ADD(3), l18), where l17 is used only in the else part of l14. Instructions l17
and l21 are two consecutive ADD instructions without any other instruction
addressing the label l21. The module for this set of three instructions can be
constructed by merging the modules corresponding to these instructions. Four
neurons (associated with auxiliary neurons and labels l17 and l21) are saved by
deleting them and adding synapses from the neuron σl14,5 to neurons σ2, σ3, σb2

and σb3 and from the neuron σl14,2 to σl18 . Similarly we can save two neurons
for the pair of the instructions l15 : (SUB(3), l18, l20), l20 : (ADD(0), l0) (here



6

l6

l4

l3

a a

a a

a a

l4, 1

a a

a a

b6

a a

a

a a

a a

l4, 4

l4, 3l4, 2

l4, 5

a a
a a

ls, 3 l4ls ls

∋L6
, , ls, 2 l4ls

ls

∋

L6
, ,5 a

ab5 a

a

Fig. 8. A module simulating SUB − ADD instructions

σbr is connected with the neurons of ADD module). So six neurons are saved in
these two cases.

If we consider all the above discussed optimizations, we save a total of 16
neurons and get the improvement from 120 to 104 neurons. We state this result
in the form of a theorem in order to stress its importance:

Theorem 1. There exists a universal computing spiking neural P system with

anti-spikes having 104 neurons with each neuron having only one rule of the

form a → a or a → a.

4 Conclusion

A universal computing SN PA system was designed by T. Song et al. using 75
neurons with a total of 125 rules, 6 different types of neurons and 8 different
types of rules. In this work, the problem of constructing universal SN PA systems
with less number and types of rules is investigated. The systems constructed in
this work has 104 simple neurons with rules of the form a → a or a → a. This
improvement in the number and types of rules of the small universal SN PA sys-
tem given by Theorems 1 is due to the use of two neurons with different rules to
represent each register. It is possible to use less number of neurons to construct
universal SN PA systems provided that neurons have more types of spiking rules.

Acknowledgements The work was supported by the European Regional De-



velopment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/
1.1.00/02.0070).

References

1. A. Păun and Gh. Păun: Small universal spiking neural P systems, BioSystems, 90,
48–60 (2007).

2. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing.
Oxford University Press, (2010).

3. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes,
Springer, Berlin, (1998).

4. I. Korec: Small universal Turing machines, Theoretical Computer Science, 168,
267–301 (1996).

5. L. Pan, Gh. Păun: Spiking neural P systems with anti-spikes, International Journal
of Computers, Communications and Control, 4(3), 273–282 (2009).

6. M. Ionescu, Gh. Păun and T. Yokomori: Spiking neural P systems, Fundamenta
Informaticae, 71, 279-308 (2006).

7. M. Minsky: Computation – Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, NJ, (1967).

8. The P System Web Page: http://ppage.psystems.eu.
9. T. Song, L. Pan, J. Wang, I. Venkat, K.G. Subramanian, and R. Abdullah: Nor-

mal forms of spiking neural P systems with anti-spikes, IEEE Transactions on
Nanobioscience, 11(4), 352–359 (2012).

10. T. Song, Y. Jiang, X. Shi, and X. Zeng: Small universal spiking neural P systems
with anti-spikes, Journal of Computational and Theoretical Nanoscience, 10 (4),
999–1006 (2013).

11. X. Zeng, X. Zhang and L. Pan: Homogeneous spiking neural P systems, Funda-
menta Informaticae, 97 (1–2), 1–20 (2009).


