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Abstract. Spiking neural P systems with anti-spikes (in short, SN PA
systems) are multi-agent systems communicate using two types of objects
called spikes and anti-spikes, inspired by neurons communicating through
exitatory and inhibitory impulses. This paper shows that computational
completeness in SN PA systems can be achieved with neurons having
only two pure spiking rules of the form a → a and a → a without any
forgetting rules. We also construct a small universal SN PA system with
90 simple neurons; neurons having only one rule of the form a → a or
a → a.

1 Introduction

Spiking neural P system [4] is a neural-inspired computational model based on
the concept of spiking neurons. It consists of a set of neurons placed in the nodes
of a directed graph (arcs representing synapses) and communicate with each
other using only one kind of objects called spikes, identical electrical impulses.
The objects evolve by means of standard spiking rules, which are of the form
E/ac → a, where E is a regular expression over {a} and c ≥ 1. The meaning
is that a neuron containing k spikes such that ak ∈ L(E), k ≥ c; can consume
c spikes and produce one spike. This spike is sent to all neurons connected by
an outgoing synapse from the neuron where the rule was applied. There also
are forgetting rules, of the form as → λ with the meaning that s ≥ 1 spikes
are removed, provided that the neuron contains exactly s spikes. One neuron is
distinguished as the output neuron and its spikes also exit into the environment,
thus producing a binary sequence called spike train (moments of time when a
spike is emitted by the output neuron are marked with 1, the other moments
are marked with 0); The distance between consecutive spikes is the main way to
encode information.

Spiking neural P system with anti-spikes [3] works in the same way as stan-
dard SN P system but deals with two types of objects called spikes (a) and
anti-spikes (a). The spiking rules are of the form E/bc → b′, where b, b′ ∈ {a, a}.
If L(E) = bc then the rules are written as bc → b′ and are called pure. The
system has four categories of spiking rules identified by (a, a), (a, a) (anti-spikes
are produced from usual spikes by means of usual spiking rules), (a, a) and (a, a)
(rules consuming anti-spikes can produce spikes or anti-spikes). The latter two



rules are generally avoided as they are quite unnatural. Each neuron in the sys-
tem has an implicit annihilation rule of the form aa → λ (if an anti-spike meets
a spike in a given neuron, then they annihilate each other (the disappearance of
one a and one a takes no time), and this happens instantaneously in a maximal
way.

The problem which “ingredients” are needed to achieve computational com-
pleteness or universality has been a challenging question for these kind of systems
also. Several answers have been given, for instance in [3], it was proved that SN
PA systems with pure spiking rules of categories (a, a), (a, a), and (a, a) with
forgetting rules are universal as number generators. In [11], it was proved that
pure spiking rules of categories (a, a) and (a, a) without forgetting rules [11],
or spiking rules of categories (a, a) and (a, a) without forgetting rules (the neu-
rons change spikes to anti-spikes or change anti-spikes to spikes) are sufficient
for universality as number generators. Recently, Zeng et al. [13] proved that ho-
mogeneous SN PA systems, i.e., P systems where the rules in every neuron are
identical, are universal.

All these systems consider spikes to represent the number and the number
of spikes present in the neuron corresponding to a register as a function of
the number stored in the register. In this paper we make use of anti-spikes to
represent the number stored in the register and number of the anti-spikes in the
neuron is equal to the number stored in the corresponding register. This avoids
the use rule of the form a → a in the neuron to check its contents for zero.
Since all neurons corresponding to registers are having the same rule a → a,
and no initial spikes/anti-spikes are present in any neurons corresponding to the
registers, the output registers can be the subject of SUB instructions. It is also
an usual practice of ignoring the number zero when the power of two number
generating/accepting devices M1 and M2 is compared; that is, N(M1) = N(M2)
if and only if N(M1) − {0} = N(M2) − {0}. But this paper also considers the
number zero for comparing the power of two systems.

This paper proves that only two rules of the form a → a and a → a without
any forgetting rules are sufficient for the universality of SN PA systems. It is
also a natural and well investigated topic in computer science to look for small
universal computing devices of various types. This topic was also considered for
SN PA systems. In [12], a universal SN PA system with 75 neurons is constructed
as a device of computing functions in which 125 rules, 6 types of neurons and
8 types of rules are used. In this work, the problem of constructing universal
SN PA systems with a small number of rules is also investigated. Specifically, a
universal SN P system with 90 simple neurons (“simple” in the sense that each
neuron has only one rule, so a total of 90 rules) having the rules of the form
a → a or a → a is constructed for computing functions.

This paper is organized as follows. We start with Section 2 by giving a brief
introduction about the SN P system with anti-spikes. In Section 3, we prove the
computational completeness of SN PA systems with neurons having only two
rules of the form a → a and a → a. Universal SN PA system is constructed in
Section 4.



2 Prerequisites

We assume the reader to be familiar with formal languages and automata theory
and spiking neural P systems. The reader can find details about them in [2], [1]
etc.

For an alphabet V , V ∗ is the free monoid generated by V with respect to
the concatenation operation and the identity λ (the empty string); the set of all
nonempty strings over V , that is, V ∗ − {λ}, is denoted by V ∗. The family of
Turing computable sets of natural numbers is denoted by NRE (it is the family
of length sets of recursively enumerable languages) and the family of Turing
computable sets of vectors of natural numbers is denoted by PsRE.

We directly introduce the type of SN PA systems we investigate in this paper.
((SN P system with anti-spikes) A spiking neural P system with anti-spikes, of
degree m ≥ 1, is a construct

Π=(O, σ1, σ2, σ3 , . . ., σm , syn , out), where

1. O = {a, a} is a binary alphabet. a is called spike and a is called an anti-spike.
2. σ1, σ2, σ3 ,. . ., σm are neurons, of the form

σi=(ni, Ri) , 1 ≤ i ≤ m, where

(a) ni ∈ {0, 1, 2, . . .} is the initial number of spikes in the neuron σi;
(b) Ri is a finite set of rules of the following two forms: (i). E/br → b′ where

b, b′ ∈ {a, a}, r ≥ 1 and E is either a regular expression over a or a; (ii).
bs → λ for some s ≥ 1, with the restriction that bs /∈ L(E) for any rule
E/br → b′ of type (i) from Ri;

There are four categories of spiking rules identified by (b, b′) ∈ {(a, a), (a, a),
(a, a), (a, a)}. Here, we allow rules of category (b, b′) ∈ {(a, a), (a, a)} but
not the other two types.

3. syn ⊆ { 1, 2, 3, . . ., m} × { 1, 2, 3, . . ., m} with (i, i) /∈ syn for 1 ≤ i ≤ m
(synapses among cells);

4. out ∈ {1, 2, 3, . . . ,m} indicates the output neuron.

A rule E/br → b′ is applied as follows. If the neuron σi contains c spikes/anti-
spikes, and bc ∈ L(E), c ≥ r, then the rule can fire, and upon application, r
spikes/anti-spikes are consumed (thus only c− r remain in σi) and a spike/anti-
spike is released, which will immediately exit the neuron. The spike/anti-spike
emitted by neuron σi will pass immediately to all neurons σj such that (i, j) ∈
syn. That means transmission of spike/anti-spike takes no waiting time (since the
rules do not specify a time delay), the spike/anti-spike will be available in neuron
σj in the next step. There is an additional restriction that a and a cannot stay
together, they annihilate each other. If a neuron has either objects a or objects
a, and further objects of either type (maybe both) arrive from other neurons,
such that we end with aq and as inside, then immediately an annihilation rule
aa → λ (which is implicit in each neuron), is applied in a maximal manner, so
that either aq−s or (a)s−q remain for the next step, provided that q ≥ s or s ≥ q,



respectively. This mutual annihilation of spikes and anti-spikes takes no waiting
time and the annihilation rule has priority over spiking and forgetting rules, so
each neuron always contains either only spikes or anti-spikes. If we have a rule
E/br → b′ with L(E) = {br}, then we write it in the simplified form as br → b′

and called pure. The rules of the form bs → λ, are forgetting rules. If neuron
contains exactly s spikes/anti-spikes, then forgetting rule bs → λ can be applied
removing s spikes/anti-spikes from the neuron immediately.

The standard SN P system works in a similar way but with only one type of
object called spike(a) and so there exist no annihilation rules.

The configuration of the system is described by C = 〈β1, β2, . . . , βm〉, where βi

is the number of spikes/anti-spikes present in neuron σi. At any moment, if βi >
0, it means that there are βi spikes in neuron σi; if βi < 0, it indicates that neuron
σi contains βi anti-spikes. The initial configuration is C0 = 〈n1, n2, . . . , nm〉.

A global clock is assumed and in each time unit, each neuron which can use
a rule should do it (the system is synchronized), but the work of the system is
sequential locally: only (at most) one rule is used in each neuron. For example, if a
neuron σi has two firing rules, E1/b

r → b′ and E2/b
c → b′ with L(E1)∩L(E2) 6=

∅, then it is possible that each of the two rules can be applied, and in that case
only one of them is chosen non-deterministically. Thus, the rules are used in the
sequential manner in each neuron, but neurons function in parallel with each
other. In each step, all neurons which can use a rule of any type, spiking or
forgetting, have to evolve, using a rule.

Using the rules in this way, we pass from one configuration of the system to
another configuration; such a step is called a transition. For two configurations
C and C′ of Π we denote by C =⇒ C′, if there is a direct transition from C to C′

in Π .

A computation ofΠ is a finite or infinite sequence of transitions starting from
the initial configuration, and every configuration appearing in such a sequence is
called reachable. A computation halts if it reaches a configuration where no rule
can be used. SN PA systems can be used as computing devices in various ways.
Here we will use them as generators of numbers. When using an SN PA system
in the generative mode, we start from the initial configuration and we define the
result of a computation as the number of steps between the first two spikes sent
out by the output neuron. The output generated is 0 if no spikes exit the output
neuron. The computations and the result of computations are defined in the
same way as for usual SN P systems - but we consider the restriction that the
output neuron produces only spikes, not also anti-spikes. We denote by N2(Π)
the set of numbers computed by Π in this way.

We generalize the SN PA by allowing it to produce k outputs. A k-output
SN PA Π has k output neurons, O1, . . . , Ok. We say that Π generates a k-tuple
(l1, . . . , lk) ∈ Nk if, starting from the initial configuration, there is a sequence of
steps such that each output neuron Oi generates exactly two spikes a a (the times
the pair a a are generated may be different for different output neurons) and the
time interval between the first a and the second a is ni. Moreover, after all the
output neurons have generated their pair of spikes, the system eventually halts,



in the following sense: Π halts if it reaches a configuration where no neurons are
fireable. The set of all k-tuples generated is denoted by Ps2(Π). We denote by
N2SaNP (catey, prulek, consq) [Ps2SaNP (catey, prulek, consq)], the families of
all sets N2(Π) [Ps2(Π), resp.] generated or accepted by SN PA systems with at
most y categories of spiking rules, at most k ≥ 1 pure rules (only spiking) in
each neuron, with all spiking rules br → b′ having r ≤ q.

In order to compute a function f : Nk → N , k natural numbers n1, . . . , nk

are introduced into the system by “reading” from the environment a binary
sequence z = 10n1−110n2−1 . . . 10nk−11. This means that the input neuron of Π
receives a spike at each step corresponding to a digit 1 from string z and no spike
otherwise. Note that k+1 spikes are exactly inputted; that is, it is assumed that
no further spike is coming to the input neuron after the last spike. The result
of the computation is encoded in the time distance between the first two spikes
emitted by the system with the restriction that the system outputs exactly two
spikes and halts (immediately after the second spike), hence it produces a spike
train of the form 0b10r−11, for some b ≥ 0 and with r = f(n1, . . . , nk).

3 Computational Completeness of SN PA Systems

We pass now to prove that SN PA systems with neurons having two rules of the
form a → a and a → a are universal as number generators.

In the following proof we use the characterization of NRE by means of
register machines [7]. Such a device - in the non-deterministic version - is a
construct M = (m,H, l0, lh, I), where m is the number of registers, H is the set
of instruction labels, l0 is the start label (labeling an ADD instruction), lh is
the halt label (assigned to instruction HALT ), and I is the set of instructions;
each label from H labels only one instruction from I, thus precisely identifying
it. When it is useful, a label can be seen as a state of the machine, l0 being the
initial state, lh the final/accepting state.

The labeled instructions are of the following forms:

1. li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj,lk non-deterministically chosen),

2. li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and
go to the instruction with label lj , otherwise go to the instruction with label
lk),

3. lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers). If we reach the halt
instruction, then the number n present in register 0 (we assume that the registers
are always numbered from 0 to m−1) at that time is said to be generated by M .
It is known (see, [7]) that register machines generate all sets of numbers which
are Turing computable.



It is also possible to consider register machines producing sets of vectors
of natural numbers. In this case a distinguished set of k-registers (for some
k ≥ 1) is designated as the output registers. A k-tuple (l1, l2, . . . , lk) ∈ Nk is
generated if M eventually halts and the contents of the output registers are
l1, l2, . . . , lk respectively. Without loss of generality we may assume that in the
halting configuration all the registers, except the output ones, are empty.

We will refer to a register machine with k-output registers (the other registers
are auxiliary registers) as a k-output register machine. It is well known that a
set S of k-tuples of numbers is generated by a k-output register machine if and
only if S is recursively enumerable. Therefore they characterize PsRE.

Theorem 1. Generating spiking neural P systems with anti-spikes with only
two types of rules of the form a → a and a → a are computationally complete,
i.e., N2SaNP (cate2, prule2, cons1) = NRE.

Proof. Let M = (m,H, l0, lh, I) be a register machine, having the properties
specified above; the result of a computation is the number from register 0 and
this register can be decremented during the computation.

What we want to do is to have SN PA Π constructed in such a way (1) to
simulate the register machine M , and (2) to have its output neuron spiking only
twice, at an interval of time which corresponds to a number computed by M .

Instead of specifying all technical details of the construction, we present the
three main types of modules of the system Π , with the neurons, their rules, and
their synapses represented graphically. In turn, simulating M means to simulate
the ADD instructions and the SUB instructions. Thus, we will have a type of
modules associated with ADD instructions, one associated with SUB instruc-
tions, and one dealing with the spiking of the output neuron (a FIN module).
The modules of the three types are given in Figs. 1, 3 and 4 respectively.

For each register r of M , we consider a neuron σr in Π whose contents
correspond to the contents of the register. Specifically, if the register r holds the
number n > 0, then the neuron σr will contain n anti-spikes.

With each label li of an instruction in M , we also associate a neuron σli

and some auxiliary neurons σliq
, q = 1, 2, 3, . . ., thus precisely identified by

label li. Initially, all these neurons are empty, with the exception of the neuron
σl0 associated with the start label of M , which contains a single spike. This
means that this neuron is activated. During the computation, the neuron σl

which receives a spike will become active. Thus, simulating an instruction li :
(OP (r), lj , lk) of M means starting with neuron σli activated, operating the
register r as requested by OP , then introducing a spike in one of the neurons
σlj , σlk which becomes in this way active. When activating the neuron σlh ,
associated with the halting label of M , the computation in M is completely
simulated in Π ; we will then send to the environment two spikes with time gap
between them equal to the number stored in the first register of M .
Simulating li : (ADD(r), lj , lk) (module ADD (Fig. 1).)

The initial instruction, that labeled with l0, is an ADD instruction. As-
sume that we are in a step t when we have to simulate an instruction li :
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Fig. 1. ADD module: simulation of li :
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Fig. 2. Deterministic ADD module li :
(ADD(r), lj)

(ADD(r), lj , lk), with a spike present in neuron σli (like σl0 in the initial config-
uration) and even if some spikes are present in the auxiliary neurons and labels
of the previous instruction executed, they will be cleared in the first step when
σli fires, so simulating the ADD instruction correctly. Having a spike inside,
neuron σli fires producing a spike. This spike will simultaneously go to neurons
σli1

, σli2
, σli3

and σli4
. These four neurons fire at the step t + 1 with neuron

σli3
non-deterministically choosing any of its rules a → a or a → a. These rules

determine the non-deterministic choice of the neurons σlj or σlk to activate. If
a → a is used in σli3

, then σli5
receives three spikes, σli6

receives a spike and
σli4

sends an anti-spike to σr (thus simulating the increase of the value of reg-
ister r with 1), σli6

uses its rule a → a and sends a spike to σli7
, σli8

, σli9
and

σlk . At the step t + 3, neurons σli7
, σli8

and σli9
fire using their rules a → a

and send three anti-spikes to σli5
(here three spikes and three anti-spikes get

annihilated). At the same step σlk also becomes active, starting the simulation
of the instruction lk.

If σli3
uses the rule a → a at t + 1, then the anti-spike from σli3

and spike
from σli2

gets annihilated in both σli5
and σli6

. Thus at step t+ 2, σli5
has one

spike and σli6
has one anti-spike. Neuron σli5

fires using its rule a → a sending
a spike to σli6

and σlj . In σli6
, the spike gets annihilated with the anti-spike.

At time t + 3, neuron σlj becomes active, thus starting the simulation of the
instruction lj .

Therefore, from the firing of neuron σli , the system adds one anti-spike to
neuron σr and non-deterministically fires one of neurons σlj and σlk . Conse-
quently, the simulation of the ADD instruction is possible in Π .
Simulating li : (SUB(r), lj , lk) (module SUB (Fig. 3).)
Assume that we are in a step t when we have to simulate an instruction li :
(SUB(r), lj , lk), with a spike present in neuron σli . Even though some spikes are
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Fig. 3. SUB module: simulation of li : (SUB(r), lj , lk)

present in the auxiliary neurons and labels of the previous instruction executed,
they will be cleared in the first step when σli fires, so simulating the SUB in-
struction correctly. Let us examine now Fig. 3, starting from the situation of
having a spike in neuron li and neuron σr , which holds a number of anti-spikes
(this number is the value of the corresponding register r). The spike of neuron
li goes immediately to two neurons, σli1

and σr . If σr contains any anti-spikes
(this corresponds to the case when register r is non-empty), then the spike gets
annihilated with one anti-spike in σr, which means the contents of register r is
decremented by one. In step t + 1 no spike will come out of σr while σli1

fires
and sends a spike to σlj and thus activates the neuron σlj . In step t+2, neuron
σlj fires, as requested by simulating the SUB instruction.

If in neuron σr there is no anti-spike (this corresponds to the case when
register r is empty), then the rule a → a is used in σr at step t + 1, hence
the neuron σlj receives two spikes and at the same time neurons σli2

and σli3

receive a spike. In the next step t + 2, neurons σli2
and σli3

fire and send two
anti-spikes to σlj and they get annihilated with the two spikes already present in
the neuron σlj . In the same step σlk fires, This means that the simulation of the
SUB instruction is correct, we started from li and we ended in lj if the register
was non-empty and decreased by one, and in lk if the register was empty.
Simulating lh : (HALT ) (module FIN (Fig. 4).)

Assume now that the computation in M halts, which means that the halting
instruction is reached. For Π this means that the neuron lh gets a spike and
fires. Let t be the moment when neuron lh fires. At that moment, neuron σ0

contains n anti-spikes, for n being the contents of register 0 of M . The spike of



neuron lh reaches immediately to neurons σ0, σlh1
, σlh2

and σlh3
. It is important

to remember that this neuron can be involved in a SUB instruction because we
have the same rule a → a in each neuron that corresponds to any register in M .
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Fig. 4. FIN module: simulation of li : HALT

If σ0 has no anti-spikes (when the value in register 0 is 0), at moment t+ 1,
four neurons σlh1

, σlh2
, σlh3

and σ0 fire and all of them spike immediately.
Neuron σlh1

sends a spike to σlh6
, neuron σlh2

sends a spike to σ0, neuron σ0

sends its spike to σlh4
and σlh5

, while σlh2
and σlh3

exchange their spikes. At
the step t + 2, neurons σlh4

, σlh5
, σlh6

and σ0 fire whereas neurons σlh2
and

σlh3
will not fire since they have two spikes in each. The spike from neuron σ0

and the anti-spike from neuron σlh4
are annihilated in σlh5

. Neurons σout and
σlh4

receive two spikes each, so cannot fire in the next step and the system halts
without sending any spikes to the environment, denoting that the number 0 is
generated by the system.

If σ0 has n > 0 anti-spikes (when the value of register 0 is n > 0), we can
observe from the Fig. 4 that at the time t + 1, only three neurons σlh1

,σlh2
,

σlh3
(neuron σ0 will not fire as the incoming spike is annihilated with one of

its anti-spikes). Neuron σlh1
sends a spike to σlh6

, neuron σlh2
sends a spike to

σ0, while σlh2
and σlh3

exchange their spikes. At the step t + 2, neurons σlh2
,

σlh3
, σlh5

and σlh6
fire. The spike from neuron σlh6

is sent to neuron σout. So
the neuron σout first fires in step t + 3 and sends its spike to the environment.
The number of steps from this spike to the next one is the number computed



by the system. In each step from t+ 1 onwards neurons σlh2
and σlh3

exchange
their spikes and σlh2

sends one spike to σ0. The neuron σ0 does not fire until it
has any anti-spikes. This means that the process of removing anti-spikes from
neuron σ0 continues, iteratively having neuron σlh2

sending spikes until σ0 has
no anti-spikes. Thus the neuron σ0 fires at the step t + n+ 1 for the first time
(for n being the initial number of anti-spikes of neuron σ0 at time t). Neuron σ0

sends a spike to σlh2
, σlh4

and σlh5
. The remaining steps work in the same way

as in the previous case. At the step t+n+3 neurons σout spikes and the system
halts.

The interval between the two spikes of neuron σout is (t+n+3)−(t+3) = n,
exactly the value of register 0 of M in the moment when its computation halts.
Consequently, N2(Π) = N(M) and this completes the proof. ut

This result can have a nice interpretation: it is sufficient for a “brain” (in the form
of an SN P system with anti-spikes) to have neurons sending either exitatory
or inhibitory impulses which behaves non-deterministically in order to achieve
“complete (Turing) creativity”.

Theorem 1 can be easily extended by allowing more output neurons and then
simulating a k-output register machine, producing in this way sets of vectors of
natural numbers.

Theorem 2. Q2SaNP (cate2, prule2, cons1) = PsRE.

4 A small universal SN P system with anti-spikes

A register machine specified above can also compute any Turing computable
function: we introduce the arguments n1, n2, . . . , nk in specified registers r1,
r2, . . . , rk (without loss of the generality, we may assume that we use the first
k registers), we start with the instruction with label l0, and if we stop (with
the instruction with label lh), then the value of the function is placed in another
specified register, rt , with all registers different from rt being empty. The partial
function computed in this way is denoted byM(n1, n2, . . . , nk). In the computing
form, the register machines can be considered deterministic, without losing the
Turing completeness: all ADD instructions li : (ADD(r), lj , lk) have lj = lk (and
the instruction is written in the form li : (ADD(r), lj)).

In [10], the register machines are used for computing functions, with the
universality defined as follows. Let (φ0, φ1, . . .) be a fixed admissible enumeration
of the unary partial recursive functions. A register machine Mu is said to be
universal if there is a recursive function g such that for all natural numbers x, y
we have φx(y) = Mu(g(x), y). In [10], several universal register machines are
constructed, with the input (the couple of numbers g(x) and y) introduced in
registers 1 and 2, and the result obtained in register 0, so that, from now on we
also assume that the registers are always numbered from 0 to m1.

We give now in the notation introduced above the specific universal reg-
ister machine from [10], which will be used in this section: we have Mu =



l0  :  (SUB(1), l1, l2), l1  :  (ADD(7), l0),

l3  :  (SUB(5), l2, l4),

l2  :  (ADD(6), l3),

l4  :  (SUB(6), l5, l3),

l6  :  (SUB(7), l7, l8), l7  :  (ADD(1), l4),

l5  :  (ADD(5), l6),

l14  :  (SUB(5), l16, l17),

l11  :  (SUB(5), l12, l13),

l8  :  (SUB(6), l9, l0),

l10  :  (SUB(4), l0, l11),l9  :  (ADD(6), l10),

l12  :  (SUB(5), l14, l15),

l17  :  (ADD(2), l21),

l13  :  (SUB(2), l18, l19),

l15  :  (SUB(3), l18, l20), l16  :  (ADD(4), l11),

l18  :  (SUB(4), l0, lh), l20  :  (ADD(0), l0),l19  :  (SUB(0), l0, l18),

lh  :  HALTl21  :  (ADD(4), l18),

Fig. 5. A universal register machine Mu from Korec [10]

(8, H, l0, lh, I), with the instructions (their labels constitute the set H) presented
in Fig. 5 (The machine from [10] contains a separate check for zero of register 6,
of the form l8 : if register(6) = 0, then go to l0, else go to l10; this instruction
was replaced in our set up by l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10)). Therefore,
there are 8 registers (numbered from 0 to 7) and 23 instructions (hence 23 la-
bels), the last instruction being the halting one. The input numbers (the “code”
of the partial recursive function to simulate and the argument for this function)
are introduced in registers 1 and 2, and the result is obtained in register 0.

In the systems constructed in this work, the neurons are quite “simple” in
the sense that each neuron has only one rule.

We proceed now to constructing the universal SN PA system Πu using pure
rules of category (a, a) and (a, a) without forgetting rules, for computing func-
tions. To this aim, we follow a similar way used in previous section but to simulate
a deterministic register machine by an SN PA system. Neurons are associated
with each register and with each label of an instruction of the machine. If a
register contains a number n, then the associated neuron will contain n anti-
spikes. Modules as in Fig. 2 and Fig. 3 are associated with the ADD and the
SUB instructions (each of these modules contains auxiliary neurons which do
not correspond to registers or to labels of instructions.

The work of the system is triggered by introducing a spike in the neuron σl0

(associated with the starting instruction of the register machine). In general, the
simulation of an ADD or SUB instruction starts by introducing a spike in the
neuron with the instruction label (we say that this neuron is activated).

Starting with neurons σ1 and σ2 already loaded with g(x) and y spikes,
respectively, and introducing a spike in neuron σl0 , we can compute in our system
Πu in the same way as the universal register machine Mu from Fig. 7; if the
computation halts, then neuron σ0 will contain the φx(y) number of anti-spikes.
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Fig. 6. INPUT module: simulation of INPUT

There are two additional tasks to solve: to introduce the mentioned anti-
spikes in the neurons σ1, σ2, and to output the computed number. The first task
is covered by module INPUT presented in Fig. 6. The neuron σc5 converts the
spikes it receives from the input neuron into anti-spikes. The neuron σc8 fires
only after receiving the third anti-spike from σc5 , and then it sends a spike to
neuron σl0 , thus starting the simulation of Mu. At that moment, neurons σ1 and
σ2 are already loaded: neuron σc3 sends to neuron σ1 as many anti-spikes as the
number of steps between the first two input spikes, and after that it gets “over
flooded” by the second input spike and is blocked (neurons σc1 and σc2 supply
spikes to σc3 till they receive second spike through σin); in turn, neuron σc5

sends anti-spikes to neurons σc6 , σc7 and they start working only after collecting
two anti-spikes. Neurons σc6 and σc7 supply one spike in each step to neuron
σc4 , which loads σ2 with as many anti-spikes as the number of steps between
the last two input spikes and all three neurons stop working after receiving the
third anti-spike from σc5 .

In this construction we do not need to modify the universal register machine
as in [4] for not allowing subtraction operations on the neuron where we place the
result. So the result will be in the neuron σ0 which corresponds to the register
0 of Mu.

Having the result of the computation in register 0, we can output the result
by means of the module OUTPUT which is same as FIN module in Fig. 4 (the
working of this module is explained in the previous section). The overall design
of the system is given in [12].
We can check that each neuron in the system Πu has only one rule; that is, the
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Fig. 7. The general design of the universal SN PA system

system Πu is simple. The system Πu has

– 8 neurons for the 8 registers,
– 23 neurons for the 23 labels,
– 9 neurons for the 9 ADD instructions and 39 neurons for 13 SUB instruc-

tions,
– 9 neurons in the INPUT module,
– 5 neurons in the OUTPUT module,

which comes to a total of 93 neurons. This number can be slightly decreased, by
some “code optimization”, exploiting some particularities of the register machine
Mu.

First, let us observe that the sequence of two consecutive ADD instructions:
l17 : (ADD(2), l21), l21 : (ADD(3), l18), without any other instruction addressing
the label l21, can be simulated by the module from Fig. 8, and in this way we
save a neuron associated with l21.

The module from Fig. 9 can simulate the consecutive ADD − SUB instruc-
tions l5 : (ADD(5), l6), l6 : (SUB(7), l7, l8). A similar module can be con-
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structed to simulate the consecutive ADD-SUB instructions l9 : (ADD(6), l10),
l10 : (SUB(4), l0, l11). So two neurons (associated with the labels l6 and l10)
are saved. We save a total of 3 neurons and get the improvement from 93 to
90 neurons. We state this result in the form of a theorem in order to stress its
importance:

Theorem 3. There exists a universal simple SN PA system with 90 neurons for
computing functions.

5 Conclusion

By using the characterization of type of rules, we were able to show that for
obtaining computational completeness of spiking neural P system with anti-
spikes only two rules of the form a → a, a → a are needed. In this work, the
problem of constructing universal SN PA systems with a small number of rules
is also investigated. The systems constructed in this work has 90 rules of the
form a → a or a → a. It is possible to use less neurons to construct universal
SN PA systems provided that neurons have more type of spiking rules.
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